
Making Infernal Grids Usable

C H Forsyth

Vita Nuova
3 Innovation Close
York Science Park
York YO10 5ZF

6 January 2006
forsyth@vitanuova.com

ABSTRACT

We regard a ‘grid’ as a specialised application of distributed systems. We
describe the construction of several production grids implemented using the
Inferno distributed operating system. The underlying technology was originally
a convenient means to an end: both systems were developed as commercial pro
jects, designed in close cooperation with the piperpaying end users, and that
contributed more than the technology to the results being regarded as eminently
usable by them. The technology did, however, help to speed development, and
makes even its lowlevel interfaces easier to document, understand, and main
tain. It represents all grid functionality, including the scheduler, as directory
hierarchies, accessed through normal file IO operations, and imported and
exported through the Internet as required.

1. Introduction

Vita Nuova applies novel technology to the construction of distributed systems. The background
of the founders includes the successful development during the 1990s of systems for realtime
auctions (of pigs and cars, separately) and online Internet game playing. These were significant
distributed systems produced on commercial terms using conventional technology (C and Unix)
in unconventional ways. For instance, the interfaces between the various components of the auc
tion system were specified in the Promela protocol specification language, verified automatically
using the SPIN protocol verifier, and the implementation as distributed communicating processes
was derived directly from them. We later formed Vita Nuova to develop and exploit some (then)
new systems originally developed by the Bell Labs research centre that produced Unix thirty
years ago, Plan 9 and Inferno. Unlike Unix (and Unix clones) they were designed from the start
with a networked world in mind.

In the past few years, Vita Nuova has undertaken several successful projects to build both
resourcesharing and computational grids, for endusers. The aim was not to produce a toolkit,
but usable deployed systems: ‘end users’ in our case meant the researchers and scientists, not
users of a programming interface. Nevertheless, some scientists need a programming interface,
and we want that to be straightforward. Various aspects of the underlying technology can help.

I shall describe three systems we built and the implementation process, and draw some conclu
sions. All three systems were implemented using the Inferno system. We do feel that its techno
logical model made the systems easier to design and build, quickly, to good standards, and I shall
suggest some reasons why. More important though is a key aspect of the development process:
in each case we worked closely with the customers � the scholars and scientists that were the
end users � to create a system that met their needs, that they could deem ‘usable’.

 2

2. Inferno

Inferno1, 2 is an operating system that provides an alternative universe for building distributed
systems. The environment presented to applications is adopted from Plan 9,3 and unorthodox.
All resources are represented in a hierarchical name space that can be assembled dynamically to
perprocess granularity.4 Resources include conventional file systems, but also devices, network
interfaces, protocols, windowing graphics, and system services such as resource discovery and
name resolution. Inferno runs ‘native’ on bare hardware but unusually, it can also run ‘hosted’
as an application under another operating system, including Windows and Unixlike systems. It
provides a virtual operating system for distributed applications, including a virtual network,
rather than acting as conventional ‘middleware’.

Inferno applications access all types of resources using the file I/O operations: open, read, write
and close. An application providing a service to be shared amongst many clients acts as a file
server. A file server in this context is simply a program that interprets a common network
independent file service protocol, called Styx" in Inferno and 9P2000 in Plan 9.2, 5 Distribution is
achieved transparently by importing and exporting resources from one place to another using
that protocol, across any suitable transport. An application runs in a local name space that con
tains the resources it needs, imported as required, unaware of their location. Resources can read
ily be securely imported across administrative boundaries. When running hosted, Inferno pro
vides the same name space representation of resources of the host system (including devices and
network interfaces) as it would provide running native. Thus for example, one can import the
network interfaces of a Linux box into an application on Windows, to use Linux as a gateway. In
all cases, Inferno presents the same narrow system call interface to its applications.

The Styx protocol itself is language and system independent. It has a dozen operations, mainly
the obvious open, read, write and close, augmented by operations to navigate and operate on the
name space and its metadata. It has been implemented on small devices, such as a Lego" pro
grammable brick,6 has C, Java and Python implementations amongst others. A Styx server
implementation in FPGA is being developed to support pervasive computing. It has been pro
posed for use in wireless sensor networks.7 Blower et al.8 provide Grid Services including work
flow using their Java Styx implementation. The v9fs module of the Linux 2.6 kernel series pro
vides direct access to 9P2000 and thus Styx through normal Linux system calls.9

3. Infernal grids

We applied Inferno and Styx to grid building. Perhaps one impetus was reading papers report
ing research into things we had been doing quite casually with Plan 9 and Inferno for years, such
as running interactive pipelines with components securely crossing authentication and adminis
tration with secure access through the Internet to the resources of many systems at once. I shall
describe three: a demonstrator, which is still of interest for the range of resources it accessed; a
datasharing grid, which creates a secure logical data store from a dispersed collection; and a
more traditional computational grid, which spreads a computational load across many comput
ing elements, Condorlike.10 Despite their different tasks, they are all built using the uniform
Inferno mechanisms described above: all the resources are represented by Styx file servers, and
can be accessed by traditional commands and system calls.

3.1. The demonstrator

The first system was a small experiment in building a simple ‘grid’ (at least in our own terms),
that would later act as a demonstrator, for instance at Grid shows and when touting for busi
ness.11 We had a collection of resources on different machines running different operating sys
tems, and aimed to give access to them to anyone who connected to the system. ‘Resources’
included data, devices, and services, all connected and accessible remotely (securely). We
wanted a good variety to emphasise that such a range could be handled by Inferno’s single
resource representation, and thus distributed. Amongst other things, we offered the following:

" a Lego" Mindstorm" programmable brick, built into a working clock6

 3

" a Kodak" digital camera under computer control

" an ODBC" database

" collaborative activities: a shared whiteboard and multiplayer card games

" a distributed computation service for image processing (‘cpu service’)

" a resource registry

It took three people about four weeks to put the system together, including writing the cpu ser
vice, the resource registry, the image processing demos, and the user interfaces. With some expe
rience, it was later revised and refined, and some manual pages written, but retained the same
implementation structure. Also deployed as part of the demonstration was an Internet Explorer
plugin we had written much earlier, that embedded the Inferno operating system environment
on a web page, allowing web browsers to run Inferno to access our little demonstration ‘grid’
without having to install special software explicitly, and without our having to compromise our
demonstration by using an HTTP gateway. A PC running native Inferno ran the gateway to the
set of services, which were behind our firewall. Inferno used its publickey system to authenti
cate callers, who could then add their own machines to the pool of cpu servers in the registry to
increase the processing power of the demo ‘grid’.

The system was demonstrated at several conferences, including a UK academic Grid conference
in June 2003.11 The system was not intended for production use; it was not sufficiently fault
tolerant, for example. Even so, it allowed us to experiment with different ways of representing
computational resources. It also showed that a realistic range of resources could be collected and
accessed using Inferno’s single method for resource representation and access: all the resources
and services listed above were represented by file servers, and accessed by clients using open,
read, write and close. The resources themselves were provided by different machines running
different native operating systems, but all of them were also running Inferno.

3.2. Data grid for the humanities

The Center for Electronic Texts in the Humanities at Rutgers wished to use a distributed comput
ing system to allow disparate collections of literary resources to be represented and accessed as a
uniform whole, with the collection spanning different machines, platforms and administrations.
The aim was to allow secure ‘‘interactive collaboration toward common goals as if the users were
working on a single large virtual computer’’.12 Tasks to be supported included not just viewing
existing archives, but managing and modifying them, and adding new material, including anno
tations and links.

We were approached by one of the principals and, given the nonprofit nature of the organisa
tions involved, agreed to create the system ‘at cost’. Some preliminary requirements capture and
specification was done using email and telephone before one member of staff was despatched to
Rutgers to do the work. He spent a few days on site, developed the final specification in discus
sions with the endusers, implemented the supporting Inferno applications, refined it, installed
the system on the relevant machines, and provided some training. The application is still in use
today.

The implementation is straightforward: one or more archive browser applications run on a client,
each building a name space suitable for the given task, incorporating name spaces from other
servers or clients as needed to support the current collaboration. Since all resources look like
files, the archive browser looks like a file browser, even though no physical file hierarchy corre
sponds to the view presented. It is important that machines are easy to add, that access is secure,
and that a collaborator sees only the files that are part of the collaboration. Furthermore, the
applications that use the resources are not available in source, and must remain unchanged.

3.3. Computational grid

The computational grid is perhaps more interesting, because it required significant new compo
nents. It was a full commercial development, and much larger scale. Even so, the same approach

 4

was followed: requirements capture, system specification, implementation, deployment, testing,
and refinement.

The customer made extensive use of an existing set of scientific applications. They used them for
their own R&D, but also to provide an analysis service to other companies. The application could
consume as much computing power as it was offered. Fortunately, as often happens, the input
data could be split into smaller chunks, processed independently, and those separate results col
lated or aggregated to yield the final result. Across its various departments, the company had
many hundreds of Windows PCs, and a handful of servers, and they wished to use the spare
cycles on the PCs to build a big virtual computational system.

Several members of Vita Nuova’s development staff, including a project manager, worked with
knowledgeable staff of the customer to refine and expand their initial set of requirements. They
had previous experience with grid systems, and their initial requirements were perhaps therefore
more precise than might otherwise have been the case.

Specification and implementation was actually in two stages, with minuted meetings and sum
mary reports throughout. First, a proofofconcept system was agreed, and produced by modify
ing the original demonstration software. We demonstrated to customer scientists (and manage
ment) that we could run existing Windows applications on a small collection of machines in our
office, and that the performance improvement claimed could be achieved. We could then discuss
the requirements and specification of the real system in detail, decide deliverable items, design an
implementation and carry that out.

Of course, had the small demonstrator failed in fundamental ways, the project could easily have
ended then, at small cost to the customer. In our experience, that is the usual approach for com
mercial projects. Of course, it does not account for many uncertainties: for instance, would the
‘production’ system scale up to many hundreds of nodes? It is not unusual for money to be kept
back until the customer has received and accepted the deliverables of the contract. (I belabour
these points to emphasise that there is considerable pressure on the software team to deliver
something the customer does indeed find usable.)

The resulting system, now called ‘Owen’, has a simple model, that of a labour exchange,13 form
ing the heart of a virtual timesharing system. Worker nodes with time available present relevant
attributes and qualifications to a scheduler at the exchange, which offers work from its queue. If
a task is suitable, a worker does it, and submits the results, which are checked at the exchange
(eg, for completeness or validity) before the corresponding task is finally marked ‘done’. The
scheduler accounts for faulty nodes and tasks. The largest unit of work submission and manage
ment is a job, divided into one or more atomic tasks. Each job has an associated task generator that
splits the work into tasks based on some specified criteria peculiar to a given application. Usu
ally the task split is determined by properties of the input data, and known before the job starts,
but tasks can be created dynamically by the task generator if required. Workers request work as
they fall idle, much as processors collect work on shared multiprocessor, rather than work being
pushed to them in response to an estimated load.

The programming team had three people: one for the scheduler, one for the worker, and one to
do the various graphical interface programs for grid control. It took six to eight weeks to pro
duce the final deliverable, and install and test it. Subsequently it has undergone further develop
ment, to add capabilities not relevant to this discussion.

4. User and programmer interfaces

Filebased representation as the lowest visible access level somehow gives access to the resources
a solid ‘feel’. It is easy to build different types of interface on that basis. I shall use the computa
tional grid as an example here.

 5

4.1. Node and job administration

Owen is administered through two simple ‘point and click’ applications. The Node Monitor,
shown in Figure 1, shows the status of the computers available (or not) to do computation.
Nodes can disconnect after accepting work, and reconnect much later to submit results. The
node monitor distinguishes those cases. It allows nodes to be added and removed from the
working set, suspended, and organised into named groups that are restricted to certain jobs, job
classes or job owners.

The Job Monitor, shown in Figure 2, shows the status of jobs submitted by a user, including the
progress made thus far. Jobs can be created and deleted, paused and continued, and their prior
ity adjusted. Both graphical applications aim for a simple, uncluttered appearance, reflecting a
simple model that hides the more complex mechanics of the underlying system.

4.2. Fundamental interface to the labour exchange

To make this more concrete, and perhaps help justify our choice of Inferno, let us look behind the
graphical user interface. The starting point for design was the definition of a name space repre
sentation for computational resources. The Exchange’s scheduler serves that name space. Each
worker node attaches it to its own local name space, in a conventional place. We can look at it
using the following commands:

mount $scheduler /mnt/sched
cd /mnt/sched; ls -l

The scheduler serves a name hierarchy, with the following names at its root, shown here as the
result of the Unixlike ls -l above:

d-r-xr-x--- M 8 admin admin 0 Apr 13 19:58 admin
--rw-rw-rw- M 8 worker worker 0 Apr 13 19:58 attrs
--rw-rw-rw- M 8 admin admin 0 Apr 13 19:58 nodename
--rw-rw-rw- M 8 worker worker 0 Apr 13 19:58 reconnect
--r--r--r-- M 8 worker worker 0 Apr 13 19:58 stoptask
--rw-rw-rw- M 8 worker worker 0 Apr 13 19:58 task

Note that although each worker sees the same names, from the scheduler’s point of view, each
worker can be distinguished and given data appropriate to it. The files shown as owned by
worker are those the worker can access. The worker can write to the attrs files to describe
acceptable work and the properties of its node. A worker reads the task file to obtain offers of
work; the read blocks until work is available. (In general, that is how publish/subscribe is done
in a Styx environment: rather than having a special mechanism and terminology, an application
simply opens a file to ‘subscribe’ to that data source on a server, and subsequent reads return
data representing the requested ‘events’, as they become available, just as it does for keyboard,
mouse or other devices.) Subsequent reads and writes exchange taskspecific data with the job’s
task generator running as a process in the scheduler. That is processed by a taskspecific compo
nent running in the worker. Amongst other things, the clientside component might receive a set
of task parameters, and small amounts of data or a list of resources elsewhere on the network for
it to put in the task’s local name space for the application’s use. The first task generators were
specific to programs such as GOLD or CHARMM, so that customers could do productive work
immediately. We then abstracted away from them. More recent generators support various
common classes of computation (including those applications); the latest generator offers a sim
ple job description language.

Job control and monitoring is provided by files in the admin directory:

 6

d-r-xr-x--- M 4 rog admin 0 Apr 14 16:31 3
d-r-xr-x--- M 4 rog admin 0 Apr 14 16:31 4
d-r-xr-x--- M 4 rog admin 0 Apr 14 16:31 7
--rw-rw---- M 4 admin admin 0 Apr 14 16:31 clone
---w--w---- M 4 admin admin 0 Apr 14 16:31 ctl
--r--r----- M 4 admin admin 0 Apr 14 16:31 formats
--r--r----- M 4 admin admin 0 Apr 14 16:31 group
--r--r----- M 4 admin admin 0 Apr 14 16:31 jobs
--r--r----- M 4 admin admin 0 Apr 14 16:31 nodes
d-rwxrwx--- M 4 admin admin 0 Apr 14 16:31 times

Access is restricted to the admin group. Each job has an associated subdirectory (3, 4 and 7 here)
containing jobspecific data:

--rw-rw---- M 4 rog admin 0 Apr 14 17:08 ctl
--rw-rw---- M 4 rog admin 0 Apr 14 17:08 data
--rw-rw---- M 4 rog admin 0 Apr 14 17:08 description
--r--r----- M 4 rog admin 0 Apr 14 17:08 duration
--r--r----- M 4 rog admin 0 Apr 14 17:08 group
--r--r----- M 4 rog admin 0 Apr 14 17:08 id
--r--r----- M 4 rog admin 0 Apr 14 17:08 monitor

To create a new job, a program opens the admin/clone file, which allocates a new directory
labelled with a new job number, and yields a file descriptor open on its ctl file. Control requests
are plain text. For example,

load jobtype arg ...

selects the task generator for the job and provides static parameters for the job, start sets it
going, stop suspends it, and delete destroys it. Reading id returns the job’s ID. Reading
duration gives a number representing the lifetime of the job. Reading group returns the name
of the group of worker nodes that can run the job. The first read of the monitor file returns the
job’s current status, and each subsequent read blocks until the status changes, following the same
idiom as for the task file above. Note that only the grid administrator and the job owner have
permission to access these files. Files in the admin directory itself describe or control the whole
grid.

4.3. Levels of interface

The Job and Node monitors are graphical applications that present a conventional graphical
interface, and they are the ones used by most users. The programs act, however, by opening,
reading and writing files in the name space above. Thus the node monitor reads a file to find the
current system status, which it displays in a frame. The job monitor kills a job by opening the
appropriate control file (if permitted) and writing a delete message into it. This makes them
easy to write and test. The worker node’s software also acts by opening, reading and writing
files.

Given the description of the scheduler’s name space, and the protocol for using each of its files,
the three software components (monitors, worker and scheduler) can be written and tested inde
pendently of each other. It is easy to produce either ‘real’ files or simple synthetic file servers that
mimic the content of the real scheduler’s files for testing. Conversely, when testing the scheduler,
one uses the Inferno shell to operate on its name space and script test cases. This encourages
independent development.

At a level below the graphical interace, the system provides a set of shell functions to be used
interactively or in scripts. Few endusers currently work at this level, but it is discussed briefly
here to suggest that it is not too demanding. Here is a script to submit a simple job to the grid:

run /lib/sh/sched # load the library
mountsched # dial the exchange and put it in name space
start filesplit -l /tmp/mytasks test md5sum

 7

The last command , start , is a shell function that starts a new job. In this case, a filesplit
job, creating separate tasks for each line of the file /tmp/mytasks , each task doing an MD5
checksum of the corresponding data. The implementation of start itself is shown below:

fn start {
id := ${job $*}
ctl $id start
echo $id

}

It calls two further functions job and ctl , that interact with the labour exchange’s name space
described earlier. Job clones a job directory and loads a task generator. Ignoring some error
handling, it does the following:

subfn job {
{

id := ‘{cat}
result=$id
echo load $* >[1=0]

} $* <> /mnt/sched/admin/clone # open for read/write
}

and ctl sends a control message to a given job:

fn ctl {
(id args) := $*
echo $args > /mnt/sched/admin/$id/ctl

}

Several of the task generators also invoke applicationspecific shell functions on labour exchange
and client, allowing tailoring to be done easily. For instance, on the client a function runtask is
invoked to start a task running on a client, and submit yields the result data (if any) to return to
the exchange. The test job used above is defined on the client as follows:

load std
fn runtask {

$* > result # run arguments as command
}

fn submit {
cat result

}

The runtask for a Windows application is usually more involved, constraining the code that
runs, checking preconditions, and providing its data in the place and format it expects. Here is a
version for an imageprocessing task:

fn runtask {
get files
check gettar -v # unpack standard input as tar file

run
cd /grid/slave/work
check mkdir Output
check {

os -n $emuroot^/grid/slave/image/process.exe <image >Output/image
}

}
fn submit {

check puttar Output
}

A corresponding job class specification sits on the exchange. It too is a set of shell functions:
mkjob to prepare global parameters for a job; mktask to prepare taskspecific parameters;
runtask to provide a task’s data and parameters to a worker; endtask to check its results; and

 8

failedtask to do error recovery. Such specifications range from 70 to 140 lines of text, the larg
est function being 10 to 20 lines.

The task generators mentioned earlier are modules in the Limbo programming language. They
range between 200 and 700 lines of code, and require knowledge of interfaces shared with the
exchange. In practice, now that we have defined generalpurpose generators that invoke shell
scripts or interpret our job description notation, it is unlikely that anyone else will ever write one,
but the interface is there to do it.

4.4. Job description

One task generator interprets a simple form of job description. It specifies a job and its compo
nent tasks declaratively, in terms of its file and value inputs. To avoid fussing with syntax, we
use Sexpressions. For example, the following trivial job calculates the MD5 checksum of each
line of the file myfile , using a separate task for each line:

(job
(file (path myfile) (split lines))
(task exec md5sum))

The little declarative language allows specification of a set of tasks as the crossproduct of static
parameters and input files or directories, and has directives to control disposition of the output.
It can optionally specify shell functions to invoke at various stages of a job or task.

5. Related work

The Newcastle Connection14 made a large collection of separate UNIX systems act as a single sys
tem (in 1981!), by distributing the UNIX system call layer using either modified kernels or
libraries. It was easy to learn and use because the existing UNIX naming conventions, and all the
program and shell interfaces familiar from the local system, worked unchanged in the larger sys
tem, but still gave access to the expanded range of systems and devices in the network. (Their
paper mentions earlier systems that also extended UNIX in various ways to build distributed sys
tems from smaller components.) The deployment and use of their system was, however, compli
cated by limitations built in to the 1970s UNIX design, notably that device control and user iden
tification had been designed for a selfcontained system, and perhaps more important, services
provided outside the kernel had no common representation, and were not distributed by the
Connection. Plan 9 from Bell Labs15 was by contrast were designed for distribution from the
start, and takes a radical approach to resolve the problems with UNIX: in particular, it represents
all resources in a uniform way, regardless of origin, and can use a single mechanism to distribute
everything. By virtualising Plan 9, Inferno spreads those benefits throughout a heterogenous net
works. The underlying protocol itself can, however, be used independently.

Minnich16 has developed an experimental system, xcpu, for building clusters of compute nodes
using the v9fs Linux kernel module. As usual with 9P2000 or Styx, the lowestlevel interface to
the system is a hierarchy of names, representing nodes and processes on a set of heterogeneous
cpu servers. Instead of submitting a job to a scheduler, as in an oldstyle ‘batch’ system, xcpu’s
model is that of an interactive timesharing system. A user requests a set of nodes of particular
type (eg, compute or IO) and imports a name space from each one, which he attaches to his local
Linux name space. Files in each node’s name space represent attributes of the node (such as
architecture and ability), the program to run, and its standard input and output. Now the user
can use any desired mixture of ordinary userlevel Linux system calls, commands and scripts to
interact directly with any or all of those nodes, seeing results as they appear. For example, shell
commands could set up a group of nodes to run an MPI application, copy the executable to each
node in parallel, and then start them, along the following lines:

 9

for i in $NODES; do
cp my-mpiapp-binary /mnt/9/$i/exec &

done
wait # for all copies to finish
for i in $NODES; do

echo mpiapp $i $NODES >/mnt/9/$i/argv &&
echo exec >/mnt/9/$i/ctl

done

Output collection, error detection, and conditionals use the command language and commands
already familiar to the users from daily use offgrid. Minnich observes that of course higherlevel
interfaces are possible and often desirable; note, however, that this is the lowestlevel interface,
and it can be used directly without much training.

Legion17 used a virtual operating system model to build a distributed object system, specifically
for grid applications. The naming hierarchy locates objects, which have objectspecific opera
tions, and objects communicate (below the name space) using messages carrying method call
parameters and results. The system provides support for object persistence, faulttolerance,
scheduling, and more, but the programming and user interface is unique to it, and nontrivial.
Grimshaw et. al18 compare Legion and Globus GT2 at many levels, including design principles,
architecture, and the implications of the passive object model then used by Globus to Legion’s
active object model. Differences are, indeed, legion. Most important here, though, is the observa
tion that ‘‘it was very difficult [with Legion] to deliver only pieces of a grid solution to the [grid]
community, so we could not provide immediate usefulness without the entire product’’ but
Globus (by providing shortterm solutions to key problems) ‘‘provided immediate usefulness to
the grid community’’. Architecturally, they contrast a bottomup approach used by Globus to the
topdown design of Legion. They describe the then emerging Open Grid Services Architecture as
a collection of ‘‘specialized service standards that, together, will realize a metaoperating system
environment’’, similar in aim therefore to Legion, with a different RPC mechanism based on
SOAP, WSDL, etc. Given the relative complexity of Legion itself, though, and the authors’
admission that it was most useful as an ‘entire product’, that could be doubleedged.

There are several commercial suppliers of grids, sometimes offshoots of university experi
ence.17, 19 Hume describes specialised software for faulttolerant data processing clusters,20, 21

processing huge telephony billing data sets to deadlines. Google has produced grid systems that
are impressive in scale and resiliency,22 based on a general underlying storage subsystem,23 with
a specialised highlevel language to ease programming.24 These developers have enthusiastic
endusers, and argue that their systems (particularly Google’s) are objectively easier to use and
more productive than ones they replaced, based on metrics such as size and complexity of pro
grams, and comparative system performance.

6. Discussion

Beckles25 lists some properties by which ‘usable’ grid software might be assessed: ‘‘engagement
with the intended user community; APIs and other programmatic interfaces; user interfaces;
security; documentation; and deployment issues’’.

Our Owen computational grid software was developed in close consultation with its initial users,
but has subsequently been provided to other customers. They have similar application profiles to
the original users; all of them continue to do useful work with it. Some are contented users of
newer facilities such as its job specification notation. We have also made the software available to
a few universities and research organisations. Results there are mixed, limited mainly by docu
mentation. If they wish to use it as originally designed, it works well. Others quite reasonably
need much more flexibility, and although that is often supported by the underlying software, the
extra documentation to allow them to use it easily is not yet available.

At a lower level, however, our systems are undoubtedly distinctive in having clients access and
control the grid using fileoriented operations. Consequently, the specification of the program
ming interface � such as the manual page for the scheduler � defines the hierarchy of names it

 10

serves, and the contents of the files therein, including a list of control files, the textual messages
that can be written to them, and their effect. What are the advantages of this representation? It is
directly accessible through any programming language in which there are constructions (or
libraries) providing explicit file access with open, read and write. Even better, in some environ
ments it can be accessed directly by existing commands. As discussed above, a small file of shell
functions allow grid jobs to be created and controlled from the Inferno command line as dis
cussed above. That is currently of little interest to many endusers, who largely wish the whole
process to be invisible: to have the computational distribution happen without their explicit inter
vention. Some, however, such as those who already write their own Perl scripts, are able, with
only a little training, to provide their own interfaces to the grid. Beckles argues for APIs that sup
port ‘progressive disclosure’ of functionality, and we find the underlying filebased metaphor
well supports that. The demonstrator grid mentioned above showed that the metaphor can be
applied to a respectable range of resource types; there are many other examples to show it is not
limiting.26, 3, 5

Another possible difference compared to a Globus27 or Web Services28 interface is that instead of
learning both protocol and mechanism, with the fileoriented interface, such users must learn
only the names and the protocol: the fileaccess mechanism is almost always quite familiar to
them, and they can carry across their intuitions about it. As it happens, the protocol for the use of
a given name space is also usually simpler and more straightforward to use than language
specific APIs full of complex data structures or objects. Indeed, the implementation of file servers
has not been discussed here, but it is notable that although the Styx protocol has messages of a
specific structure, there are only 13 operations, most of them obvious (eg, open, close, read, write)
with obvious parameters, and every file server implements the same operations. Compared (say)
to plugins to a web server, there are neither programming interfaces nor data structures
imposed on the servers by their surroundings; they can manage their own internals as they like,
as selfcontained programs. For instance, some are concurrent programs, but many are simple
programs that run in a single process. Within Inferno, there is a system primitive file2chan
that makes it easy to write applications that serve only a handful of names. Lacking (and a seri
ous omission) are good tutorials on writing ‘full’ file servers from scratch.

For widescale release, it is easy to underestimate the effort required to document both infrastruc
ture and applications, especially to suit a range of endusers (ie, scientists and programmers). In
19992000, for the first public release of Inferno itself, a team of five spent many months prepar
ing its documentation and assembling the distribution (and Inferno is not a huge system). That
documentation was intended for programmers (perhaps even system programmers). It can be
harder still to prepare things for end users, even when the applications have been kept simple.
We do not yet consider our grid documentation to be up to our standards.

We originally distributed the client software from a CD using the same mechanism as Inferno,
but that was clumsy. The grid client software is now typically installed simply by copying a
small hierarchy (a few megabytes), for instance from a USB memory stick or a shared file store.

Conclusions

Supposing that within the constraints of our time and treasure, we have indeed managed to build
grids that customers found usable, and with underlying technology and interfaces that we con
sider usable, are there any general lessons? They are mainly traditional ones. As implied in the
company history in the Introduction, we have successfully applied them in the past, outside
Inferno.

We had a clear and indeed limited design (‘‘do one thing well’’). Rather than provide an abstract
interface to a big family of possibilities, as is done by some of the Web Service specifications, we
decided on one that was ‘fit for purpose’. We used mature technology with which we had much
design and implementation experience; its definition is compact and stable. The system should
help separate concerns and provide a focus for the design. In our case, systemlevel mechanisms
do distribution and stationtostation authentication. The name space provides the focus of dis

 11

cussion during initial design meetings, and its description acts as a highlevel contract between
components. Minimisation of mechanism is a good engineering principle; we were working with
an infrastructure that provides a narrow interface. On the other hand, if the systemprovided
mechanisms are too primitive (‘‘message passing’’ or ‘‘remote procedure call’’) then there is little
structural support for application development, no common currency, and little chance of either
users or programmers being able to reuse knowledge. Using simple metaphors that make sense
to them must surely help, especially if the just one can be used throughout.

Most important, as Beckles suggests,25 interaction with end users is essential. Our various pro
jects have been successful, and the resulting new systems worked well for their users, partly
because the underlying technology worked well and was easy to use, but also because we dealt
with them as normal commercial projects, working closely with customers to provide something
that suited them. As important as that interaction is an imposed discipline. We have fortunately
been able to deal directly with end users who really must get their work done; the amazing poli
tics now associated with the escience grid world is irrelevant to them and to us. Furthermore,
commercial requirements�certainly for a small company�mean that the result must meet dead
lines, satisfy customer expectations, and keep to budget. We find this helps to focus mind and
energy wonderfully.

Acknowledgements

Roger Peppé and Chris Locke designed and implemented the labour exchange; Peppé subse
quently added the job description language and other improvements, and wrote the documenta
tion. Danny Byrne wrote the graphical interface applications.

References

1. Sean Dorward, Rob Pike, David L Presotto, Dennis M Ritchie, Howard Trickey, Phil Win
terbottom, ‘‘The Inferno Operating System,’’ Bell Labs Technical Journal 2(1), pp. 518 (Winter
1997).

2. Inferno Programmer’s Manual, Third Edition, Vita Nuova Limited (2000).

3. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, Phil Winterbottom, ‘‘The Use of
Name Spaces in Plan 9,’’ Proceedings of the 5th ACM SIGOPS European Workshop, Mont
SaintMichel (1992).

4. Rob Pike, Dennis M Ritchie, ‘‘The Styx Architecture for Distributed Systems,’’ Bell Labs
Technical Journal 4(2), pp. 146152 (AprilJune 1999).

5. C H Forsyth, ‘‘The Ubiquitous File Server in Plan 9,’’ Proceedings of the Libre Software Meet
ing, Dijon, France, Vita Nuova Limited (59 July 2005).

6. Chris Locke, StyxonaBrick, Vita Nuova Limited, York, England (June 2000).

7. Sameer Tilak, Bhanu Pisupati, Kenneth Chiu, Geoffrey Brown, Nael AbuGhazaleh, ‘‘A File
System Abstraction for Sense and Respond Systems,’’ Workshop on EndtoEnd, Senseand
Respond Systems, Applications and Services, Seattle WA, pp. 16 (June 2005).

8. Jon Blower, Keith Haines, Ed Llewellin, Data streaming, workflow and firewallfriendly Grid
Services with Styx, eScience Centre, University of Reading (2005).

9. Eric Van Hensbergen, Ron Minnich, ‘‘Grave Robbers from Outer Space: Using 9P2000
Under Linux,’’ Proceedings of the USENIX 2005 Annual Technical Conference, FREENIX Track,
Anaheim, CA, pp. 8394 (April 2005).

10. M Litzkow, M Livny, M W Mutka, ‘‘Condor a Hunter of Idle Workstations,’’ Proceedings of
the 8th International Conference of Distributed Computing Systems, pp. 104111 (June 1988).

11. Michael Jeffrey, Inferno Grid Applications, Vita Nuova Limited, York, England (June 2003).

12. Brian Hancock, ‘‘A Brief Introduction to the Humanities Grid,’’ Library Hi Tech News, New
Brunswick, New Jersey(8), pp. 3233, Rutgers University Libraries (2004).

 12

13. Roger Peppé, Owen A Labour Exchange for Computational Grids, Vita Nuova Limited, York,
England (April 2004).

14. D R Brownbridge, L F Marshall, B Randell, ‘‘The Newcastle Connection or UNIXes of the
World Unite!,’’ Software Practice and Experience 12(6), pp. 11471162 (1982).

15. Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
Phil Winterbottom, ‘‘Plan 9 from Bell Labs,’’ Computing Systems 8(3), pp. 221254 (Summer
1995).

16. Ron Minnich, ‘‘XCPU operation,’’ LAUR057562, Los Alamos National Labs (July 2005).

17. Andrew S Grimshaw, Anh NguyenTuong, William A Wulf, ‘‘Campuswide Computing:
Early Results Using Legion at the University of Virginia,’’ CS9519, University of Virginia
(March 1995).

18. A S Grimshaw, M A Humphrey, A Natrajan, ‘‘A philosophical and technical comparison of
Legion and Globus,’’ IBM Journal of Reesearch and Development 48(2) (2004).

19. S Zhou, J Wang, X Zheng, P Delisle, ‘‘Utopia: A load sharing facility for large, heteroge
neous distributed computing systems,’’ Software � Practice and Experience 23(12), pp. 1305
1336 (December 1993).

20. Andrew Hume, Scott Daniels, Angus MacLellan, ‘‘Ningaui: A Linux Cluster for Business,’’
Proceeding of USENIX 2002 Annual Technical Conference (FREENIX track), Monterey, Califor
nia, pp. 195206 (June 1011, 2000).

21. Andrew Hume, Scott Daniels, Angus MacLellan, ‘‘Gecko: Tracking a Very Large Billing
System,’’ Proceedings of 2000 USENIX Annual Technical Conference, San Diego, California
(June 1823, 2000).

22. Jeffrey Dean, Sanjay Ghemawat, ‘‘MapReduce: Simplified Data Processing on Large Clus
ters,’’ Proceedings of the Sixth Symposium on Operating System Design and Implementation, San
Francisco, California (December 2004).

23. Sanjay Ghemawat, Howard Gobioff, ShunTak Leung, ‘‘The Google File System,’’ Proceed
ings of the Symposium on Operating System Principles, Bolton Landing, New York (1922 Octo
ber 2003).

24. Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan, Interpreting the Data: Parallel Data
Analysis with Sawzall (Draft), Google, Inc (2005).

25. Bruce Beckles, Refactoring grid computing for usability, University of Cambridge Computing
Service, Cambridge, England (2005).

26. Dave Presotto, Phil Winterbottom, ‘‘The Organization of Networks in Plan 9,’’ Proceedings of
the Winter 1993 USENIX Conference, San Diego, California, pp. 271280 (1993).

27. I Foster, C Kesselman, ‘‘Globus: A Metacomputing Infrastructure Toolkit,’’ Intl Journal of
Supercomputer Applications 11(2), pp. 115128 (1997).

28. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Fer
ris, David Orchard, ‘‘Web Services Architecture,’’ Technical Report
http://www.w3.org/wsarch/, W3C (February 2004).

 13

Figure 1. The Node Monitor shows the status of computers forming the virtual computer

Figure 2. The Job Monitor shows job status and provides job control
